We call a local homeomorphism $f: (R^n,0)\to(R^n,0)$ blow-analytic if itbecomes real analytic after composing with a finite number blowings-up withsmooth nowhere dense centers. If the graph of $f$ is semi-algebraic then, by atheorem of Bierstone and Milman, $f$ is blow-analytic if and only if it isarc-analytic: the image by $f$ of a parametrized real analytic arc is again areal analytic arc. For a semialgebraic homeomorphism $f$ we show that if $f$ is blow-analyticand the inverse of $f$ is Lipschitz, then $f$ is Lipschitz and the inverse of$f$ is blow-analytic. The proof is by a motivic integration argument, usingadditive invariants on the spaces of arcs.
展开▼
机译:我们称它为局部同胚$ f:(R ^ n,0)\ to(R ^ n,0)$吹动解析,如果它是由有限数量的爆炸所组成,并且没有光滑的密集中心,则成为实解析。如果$ f $的图形是半代数的,那么根据Bierstone和Milman的定理,$ f $是吹动分析的,当且仅当它是arc-analytic时:参数化的真实分析弧的$ f $图像再次出现面分析弧。对于半代数同胚同构$ f $,我们证明了如果$ f $是打击分析的,而$ f $的逆是Lipschitz,则$ f $是Lipschitz,而$ f $的逆是打击分析。证明是根据动机积分论证,在圆弧空间上使用了加性不变量。
展开▼